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Abstract-A recent equation for calculating heat-transfer coefficients to constant property fluids in pines 
is modified to correlate variable property data. The correlating equation is of convenient form, applies 
to both liquids and gases, correlates constant property results within 10 per cent for 0.1 < Pr < lOA 
with 10“ < Re < 106, and correlates variable property data within 20 per cent for 07 < Pr i 75 with 
10000 < Re < 506000. The equation is compared with the Sieder-Tate equation for liquids and the 
two equations of Petukhov for gases and liquids. Equations for heat transfer to variable property liquid 

metals are suggested. 

NOMENCLATURE 

area of heat exchanger; 
heat capacity at constant pressure; 
inside pipe diameter; 
friction factor defined by equation (5); 
local heat-transfer coetlicient, q/(T,- T,); 
thermal conductivity; 
local Nusselt number, hD/k; 
local Prandtl number, C&k; 
local heat flux; 
rate of heat transfer in an exchanger; 
local Reynolds number, DVp/p; 
absolute temperature; 
overall heat-transfer coefficient in an 
exchanger; 
local bulk average velocity in a pipe; 
distance from thermal entrance. 

Greek symbols 

/c viscosity; 

PY density. 

Subscripts 

0, constant property case, equation (5) or (9); 
b, evaluated at local bulk temperature; 

w, evaluated at local wall temperature; 

f 3 evaluated at local film temperature 
7” = (Tb + 7”)/2. 

INTRODUCTION 

FOR 

Q023Reb0.BPr6”3(r_rb/lU,)O-14 (3) 

where the subscripts b and w indicate that the relevant 
physical properties are evaluated at the bulk and wall 
temperatures respectively. 

Equation (3) does not apply well to gases, though 
it is sometimes used for this purpose. There is an 
extensive literature on heat transfer to gases with large 
wall-to-bulk t~~rature differences, and a variety of 
correlation methods have been proposed. Good reviews 
of the subject have been written by Petukhov [3] and 
Kays and Perkins [4]. 

677 



where (ALQ,,, is the logarithnlicm~n of the temperature 
difference (between the hot and coid streams) at one 
end of the exchanger and at the other end of the 
exchanger. No error is introduced by this procedure 
when the exchanger is long (so that entrance effects are 
negligible) and when physical properties are ellectively 
uniform everywhere, for in this case the coefficients 
are uniform and equation (4) follows exactly. On the 
other hand, when physical properties vary in the 
exchanger, the heat-transfer process is not described 
by equation (4) and cons~~ently the average co- 
efficients calculated *‘by definition” from equation (4) 
are difficult to correlate. Point (or local) coefficients 
should be easier to correlate because they are more 
sensitive to local conditions than to upstream condi- 
tions and because physical property variations over 
the pipe radius are generally much less than over the 
exchanger length. For these reasons, among others. 
there is considerable scatter of data in the literature. 
Only local coefficients will be considered in this paper. 

It is known that the Dittus-Boelter equation is 
inaccurate over certain ranges of the Reynolds and 
Prandtl numbers. It is apparently (O-.25 per cent high 
for gases and as much as 40 per cent low at intermediate 
Prandtl numbers and high Reynolds number. Because 
of these and other uncertainties when the equation is 
used for design, the designer usually incorporates a 
liberal safety factor. Although this conservative practice 
is sound, it is possible that safety factors and costs 
could be reduced somewhat if equations more refiabte 
than (l), (2), and (3) were available. These consider- 
ations led Petukhov to engage in a long study of heat- 
transfer coefficients in pipes. This work as well as others 
is presented in his admirably thorough review [3]. 

In his paper Petukhov presents two correlations for 

~~~n~tu~~t prqwry, fully-developed heat-transfer co- 
efficients in pipes One of them correlates his calcu- 
lations within 2 per cent but is quite complex. Since 
neither the mathematical model nor heat-transfer data 
are likely to be accurate within 2 per cent, and since 
it is seldom if ever that coelbcients of that accuracy 
are required, Petukhov presents a simpler equation 
which correlates his results within IO per cent for 
0.5 < Pr < 2OOOand lo4 < Re <: 5 x IO’. The equation 
is: 

where 

f= (1~8210gRe-164-2 lo4 < Re < 5 x 106. 

This equation has been critically evaluated by Webb 
[S], who concludes that it provides a much better 
correlation or heat- and mass-transfer data than do the 
Dittus-Boelter or Colburn equations. 

Petukhov also presents the results of a theoretical 
analysis of heat transfer to variable property fluids. 
The analysis incorporates assumptions about the effect 
of physical property variation on eddy diffusivity, and 
the results are given in the form of inconvenient 

integrals. Consequently, Petukhov recommends a 
Sieder-Tate type correction to equation (5) for variable 
property liyui6f.s: 

NU* = ~l~~~~*~~,~,~‘I 16) 

where n = 0.11 for heating and 0.25 for cooling. This 
equation has been critically evaluated by Hufschmidt, 
Burck and Riebold [6], who in a well-designed experi- 
ment took much data on heating of water at large 
tem~rature differences. They found that their data 
were well correlated by a modified form of equation (6): 

The difference between equations (6) and (7) is usually 
smah because for most liquids the ratio C,/k is only 
a weak Function of temperature. 

For variable property gases Petukhov suggests 

where a = 0 for cooling and 0.3 for heating. 
Recently Notter and Sleicher [7] also published an 

analysis of heat transfer to constant property fluids in 
pipes. Their analysis was completed before the appear- 
ance of Petukhov’s paper, though they overlooked an 
earlier paper by Petukhov and Kirillov [S] in which 
equation (5) was first given. Notter and $Ieicher’s 
~al~uIations were correlated within 10 per cent by 

Nuo = 5+@015Re”Prb 
0.1 < Pr < IO4 
lo4 < Re < lo6 

il = 0.88 - @tit/(4 + Pr) (91 

h = 1/3+0~5e-*~““. 

In reference [7] the coefficient in equation (9) is given 
as 0.016 rather than 0.015. As shown later in this paper, 
however, the value t&Q15 correlates both constant and 
variable property data a little better. 

For gases (06 < Pr < 0.9) equation (9) simplifies 
within 4 per cent to 

Ntlo = 5~r0~012Re”‘~~jPr3-0.29). W) 

A comparison of equations (5) and (9) is revealing. 
Respite their entirely different structure, the corre- 
lations give surprisingly similar results. Over the major 
portion of parameter space from 0.1 s: Pr < lo4 and 
104 < Re < 5 x lo6 these equations differ by less than 
5 per cent, and the maximum difference is 9 per cent, 
which occurs near EEe = 106, PP = 1.4. Consequently, 
the choice between the two equations is largely a matter 
of taste. The equation of Petukhov and Kirillov is 
appealingly elegant, whereas that of Notter and Sleicher 
retains some of the simplicity of the Dittus--falter 
equation and reveals more clearly the way in which 
Nu varies with Re and Pr. We have made many 
calculations with both equations in the preparation of 
this paper and find that in practice equation (9) is easier 
to use; it requires fewer entries on a desk calculator 
than does equation (5). 
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DEVELOPMENT OF VARIABLE PROPERTY 
CORRELATION 

The apparent success of equation (9) in correlating 
constant property data over a wide range of Prandtl 
and Reynolds numbers led us to investigate whether 
it could be modified to account for property variation. 
The equation was modified by applying to it a Sieder- 
Tate type correction factor and by determining the 
best temperature at which to evaluate the Nusselt, 
Prandtl, and Reynolds numbers. The modified equa- 
tion is: 

Nzl, = 5+0,01SRej”Pr~Ol,fl*,)” 

a = 0.88 - 0.24/(4 + PQ) 

h -_ 1/3+0.5e-“‘6P’k 

(10) 

where the subscripts denote some reference tempera- 
ture at which the parameter is evaluated. The question 
to be answered is: What are the best values of 
i,j,k,landn? 

Consideration was limited to three choices of refer- 
ence temperature--the local wall temperature T,,, the 
local bulk temperature Tb. and the local “film” tem- 
perature Tf z (T,+ &j/2. Hence i, j, k and 1 could each 
be either w,f, or b. Values of n studied were 0, 0.05, 
0~08,0~1,0~12,0~14, 0.16, 0.18,020, 0.25, 0.30 and 0.40. 

The values of i, j, k, 1 and n were determined by 
fitting equation (10) to selected data in the literature. 
These data were chosen to meet the following con- 
ditions: absence of thermal and hydrodynamic entry 
effects, wide range of fluid properties over the pipe 
radius, local rather than mean values of heat-transfer 
coefficient, general care with which the experiment was 
designed and performed, and completeness of the 
description of equipment and results. A computer was 
progr~ed to calculate a set of Nu from equation 
(10) for comparison to the experimental values. Note 
that for each experimental value of k from the literature 
there were three experimental values of Nu (i = b, 
J; and w), and each was compared to 216 values of 
Nu calculated from equation (lo), there being three 
values of Re, three of Pr, twelve of n, and two of 1 

fb andf). 
An examination of the computer output revealed that 

one correlation was slightly superior to all others and 
far superior to most. Surprisingly and fortunately, the 
best value of n is zero with i = b, j = f, and k = w. 
Thus the final correlation is 

Nub = 5+0.015ReTPe 
0.1 < Pr < 105 
10” < Re < lo6 

a = 0.88 - 0*24/(4 + Pr,) 

b = 113 +O.+je-O’6P’~~, 

(11) 

For gases (0.6 < Pr < 0.9) the equation becomes 

Nu, = 5+0.012Re~*3(~~~+0,29). (IIa) 

COMPARISON OF EQUATIONS TO DATA 

This correlation and Petukhov’s equation (8) will 
now be compared to data on gases, following which 
data on liquids will be compared to the Sieder-Tate 
equation (3), Petukhov’s equation (6), and equation (11). 

Figure 1 compares calculations to four studies on 
gases, The data shown are all for fully-developed 
turbulent flow in the absence of entrance effects but 
cover a wide range of Reynolds number, w~l-to-bulk 
temperature difference, and distance from thermal 
entrance. Some other relevant studies from the litera- 
ture could not be exploited because sufficiently com- 
plete data were not given. The points of Kays and 
Leung [9] are effectively constant property results and 
were obtained on air. The original data of Deissler 
and Eian [IO], kindly supplied to us by Deissfer, 
consisted ofseventy-seven runs on air taken at x/D = 93 
in which T,- T, ranged from 71 to 9OYF with 
9400 < Reb < 506000. To reduce the number of points 
from this study, we choose only even numbered runs 
and eliminated two runs in which the bulk Reynolds 
number was less than 10~. The remaining thirty- 
seven data points are shown. Lel’chuk and Dyadyakin 
[l l] report detailed measurements on air with T, - G 
up to 1070°F and x/D ranging from 1.1 to 133. Shown 
on the figure are their thirty points at x/D = 100. 
Perkins and Worsoe-Schmidt [12] used precooled 
nitrogen to achieve temperature differences as high as 
1934°F and T,./Tb up to 754. Shown on Fig. 1 are 
their data (twenty-eight points) at x/D = 40,6.5,89 and 
119, except for runs in which Iaminar-turbulent tran- 
sition effects or condensation was noted. 

The Sieder-Tate equation (3) is not shown on Fig. 1, 
since the data deviate from it by as much as a factor 
of 2. Evidently both equations (11) and (8) correlate 
the wide range of data tolerably well, though deviations 
of 20-25 per cent occur with equation (11) when Tw/Tb 
exceeds 2. The average deviation of the 120 points 
shown is 6.8 per cent for equation (8) and 6-9 per cent 
for equation (11) or (1 la). It is evident, however, that 
the points scatter about equally above and below 
equation (11) whereas most of the calculations with 
equation (8) lie below the data. This is a consequence 
of over-correction by the T&,/7”, term in equation (8) 
at T,/T, less than about 2. Petukhov [3] states that 
equation (8) correlates his analytical results, but differ- 
ent values of the constants fit the data on Fig. 1 better. 
We find that a better fit to heating data occurs when 
equation (8) is modified to 

with 

Nu, = Nu,(T,/T,)” 

n = -log~~(~~/~~)i~4+0.3 
@a) 

or equation (9a) to 

Nui, = 5+0*012Ret’83 O-6 < Pr < 0.9 
x (Prb+0.29)(Tw/Tb)” 10” < Re < lo6 ,,?, 

1 < T,/T, < 5 
\iif 

n = -~og,o(T~/T*~1’4+0.3 
x/D > 40. 

This equation is also shown on Fig. 1. The average 
deviation of the data is 4.2 per cent and the maximum 
is 18 per cent with only 4 of the 120 points exceeding 
10 per cent. Equations (11) or (1 la), (Sa), and (12) give 
very similar results for Tw!Tb < 2, and as T,/T, increases 
above about 2, equations (8a) and (12) correlate the 
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Reynolds number 

FIG. I. Comparison of data on gases to three equations. 

Deissler and Eian [lo] 
Kays and Leung L9J 
Lel’chuk and Dyadyakin [ 111 
Perkins and Worsoe-Schmidt [12] 

data better. Equation (1 la) is, of course, much the 
simplest. Note that its use requires knowledge of three 
gas properties (k, p and Pr) each at a different tem- 

perature whereas in equation (12) the same properties 
are evaluated at one temperature. 

A comparison of gas data to Petukhov’s equation (5) 

ias made with Nu evaluated at r,, Re at Tf, and Pr 
at T,, but results were less satisfactory than equations 
(11) or (12). We also compared the data on Fig. 1 to the 

four correlating equations given on pp. 7-164 of Kays 
and Perkins [4]. The best of these we judge to be the 
“wall temperature correlation” of Perkins and Worsoe- 
Schmidt [12], which has the same average deviation 
from the data as equation (11) but is slightly better 
than equation (11) for the variable property data and 
inferior at low values of T,,/T,. For the 120 data points 
used here, equation (12) gives a lower average deviation 
and a lower maximum deviation than any equation 
we have found. 

Equations (3), (6) and (11) will now be compared to 
data for fluids at high Prandtl (or Schmidt) number- 
first for the constant property cases and then for 
variable properties. 

The data of Allen and Eckert [13] on water and of 
Malina and Sparrow [14] are particularly well adapted 
for comparison to constant property correlations 
because of the systematic way in which the experiments 
were designed: At each of four constant values of the 
bulk Prandtl number (3, 8, 48 and 75), the bulk 
Reynolds number was held constant (at one of several 

LIT, 
o- 1.4 1.4-2 12 

0 c, 
V 
0 q 

A A 

values) while the wall-to-bulk temperature difference 

was systematically varied. Thus extrapolation to the 
constant property case, T,, - Tb = 0, is facilitated. There 
is a total of eighteen Pr - Re combinations covering 
the following ranges: Pr, = 3, 14 500 < Reb < 101000; 
Pr,, = 8, 13000 < Reb < 111000; Prh = 48, 14 100 < 

Rq, < 43 100; Pr, = 75, 12000 < Reb < 27 500. The 
data extrapolated to T, - q = 0 for the eighteen Re-Pr 
combinations are shown as the triangles on Fig. 2. 
Also shown are the mass-transfer data of Harriot and 
Hamilton [ 151 at Schmidt numbers (mass-transfer 
equivalent of Prandtl number) of 930 and 9810 and 

three points calculated by Netter and Sleicher [16] at 
high Schmidt number and for Reynolds numbers 
beyond the range of Harriot and Hamilton’s data. 

It is clear from Fig. 2 that equations (5) and (9) 
correlate the data much better than the Dittus-Boelter 

equation (l), in agreement with Webb [5]. The average 
deviations of the thirty-one points shown are 14 per cent 
for equation (I), 3.4 per cent for equation (5), and 
4.1 per cent for equation (9). Apparently, equations (5) 
and (9) are both excellent fits to the data over a wide 
range of Prandtl and Reynolds numbers. 
Figure 3 compares some variable property data to the 
Sieder-Tate equation (3), Petukhov’s equation (6), and 
equation (11). The data shown are those of Allen and 
Eckert [13] and Malina and Sparrow [14]. Although 
these studies included data at many values of T,- Th, 
it is superfluous to compare all of these to the corre- 
lations. Rather we have compared the data only at the 
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Reynolds number 

FIG. 2. Comparison of constant property data on liquids to three equations. 
Allen and Eckert [13], h, Pr = 8; Malina and Sparrow [14], A, Pr = 3, V, Pr = 48, 
9, Pr = 75; Harriot and Hamilton [15], 0, SC = 930, 0, SC = 9810; Notter and 

Sleicher [16], 0, SC = 1000, n , SC = 10000. 
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FIG. 3. Comparison of variable property data on liquids to 
three equations. Allen and Eckert [13], o, Pr = 3, pa/p, = 
1.46-2.81; Malina and Sparrow [14], LI, Pr = 8, pb/fi, = 
1.435; v, Pr = 48, psJfiW = 1.835-2; U, Pr = 75, pa/~w = 

1.85-2.88. 

approximate maximum experimental values of T,- Tb 
at each of the eighteen Re-Pr combinations. For these 
data the values of pb/pw range from 1.43 to 2.88. The 
average deviations of the data are 23 per cent for 
equation (3), 4.1 per cent for equation (6) and 3.9 
per cent for equation (11). It is clear, at least for water 
and the oil used by Malina and Sparrow (a chlorinated 
biphenyl), that equations (6) and (11) correlate the 
data about equally well. 

The data of Allen and Eckert and Malina and 
Sparrow cannot provide a test of the relative merits 
of equations (6) and (7) because the predictions of the 
two equations differ by less than 0.5 per cent over the 
range of variables studied. 

The foregoing comparisons show that for most 
design purposes either equation (11) for all fluids or 
equation (6) for liquids and equation (12) for gases is 
satisfactory. Equation (1 l), however, is more convenient 
to use. For gases equation (1 la) is particularly simple 
and correlates data well to T,/T, < 2. 

One advantage of equation (11) is that it displays 
clearly the way in which Nu varies with velocity or 
Reynolds number. It is therefore useful in determining 
the best way to make a “Wilson plot” for determining 
the outside heat-transfer coefficient of an exchanger by 
varying the inside fluid flow rate. The equation shows 
that l/U should be plotted vs V-” or Re;” for 
extrapolation of V-“or Rey” to zero. (At high Reynolds 
number the 5 in equation (11) is negligible.) 

Equation (11) has not yet been adequately tested 
against cooling data. It is our judgment, however, that 
equation (11) is the best form of equation (9) for cooling 
as well as heating. A comparison of equations (11) with 
equations (6) and (8) for local cooling coefficients would 
be interesting. 

ASYMPTOTIC FORMS 

The asymptotic form of equation (11) for high 
Prandtl number is 

Nu, = 0.015 Rey88Pr$3 (13) 

which closely approximates (11) for Pr > 50. This 



682 C. A. SLEKHER and M. W. Rorlsr 

equation in its constant property form has previously 

been given by Notter and Sleicher [ 161 as a correlation 
for high Prandtl number fluids. The equation correlates 
very well with the data of Malina and Sparrow [ 141 at 
Pr = 48 and Pr = 75 as well as the mass-transfer data 

of Harriot and Hamilton [15] for Schmidt numbers 
as high as 100 000. 

For very low Prandtl number fluids, the liquid 
metals, the asymptotic form of equation (11) is 

Nu, = 5+0~015Re~~82Pr~~83 Pr < 0.04. (14) 

This equation gives surprisingly close agreement, 

t_ 10 per cent, with the data of Sleicher, Awad and 
Notter [17] for heat transfer to liquid metals in a pipe 

at un$xm w/l temperature. Nevertheless, the equation 
is not as good in the liquid metal range as the equations 

given in [ 171. If we assume that the modification of 
constant property equation (9) to achieve variable 

property correlation (11) can also be applied to the 
liquid metal correlations of reference [17], those 
correlations become 

Uniform wall temp. 

Nub = 4~8+0~0156Re~‘85Pr~~93, Pr < 0.1 (15) 

Uniform wall flux : 

NuI, = 6~3+0~0167Re~‘85Pr~~93, Pr < 0.1. (16) 

These two correlations are offered tentatively. Al- 
though they are good correlations for constant proper- 
ties, they have not been tested for variable properties. 

SUMMARY AND CONCLUSIONS 

A single equation, equation (1 l), correlates local heat- 
transfer coefficients in pipes for both liquids and gases 

whose physical properties are temperature dependent. 
The equation is more convenient to use than 
Petukhov’s separate equations for liquids and gases, 
and it equals the accuracy of those equations except 
for gases in which TJT, exceeds 2, in which case 
equation (12) is recommended. Equation (11) has not 

been tested against local cooling coefficients, though 
its deviations from the constant property correlation 
are in the correct direction for both cooling and heating. 

Based on the success of the structure of equation 
(1 I), two equations, (14) and (15), are offered tentatively 
as correlations for heat transfer to variable property 
liquid metals in pipe flow. 

Ac/~~owledgemenr-- We are grateful to R. G. Deissler for 
kindly supplying us with his original data on air. 

REFERENCES 

1. W. H. McAdams, Heut Transmission, 3rd edn. McGraw- 
Hill, New York (1954). 

2. E. N. Sieder and G. E. Tate, Heat transfer and pressure 
drop of liquids in tubes, Ind. Engng Chem. 28,1429 (1936). 

3. B. S. Petukhov, Heat transfer and friction in turbulent 
pipe flow with variable physical properties, Ado. Heat 
Trmf: 6, 503-504 (1970). 

4 

5 

6. 

I. 

8. 

9. 

10. 

Il. 

1’. 

13. 

14. 

15. 

16. 

17. 

18. 

W. M. Kays and H. C. Perkrns, rn Iluntlhooh of ffctrt 
Trunsfrr, edited by W. M. Rohsenow and J. P. Hartnett, 
Section 7, McGraw-Hill, New York (1973). 
R. L. Webb. A critical evaluation of analytical solutions 
and Reynolds analogy equations for turbulent heat and 
mass transfer in smooth tubes. B&me- II. Stofliiher- 
rruyun<q 4, 1977204 (1971). 

W. Hufschmidt. E. Burck and W. Riebold, Die Bestim- 
mung Grtlicher und Mittlerer Wdrmeubergangzahlen in 
Rohrer bei Hohen Warmestromdichten, fnt. J. Heat 
Mass Transjbr 9. 539 565 (1966). 
R. H. Notter and C. A. Sleicher, A solution to the 
turbulent Graetz problem -III. Fully developed and 
entry region heat transfer rates, Chem. Engng SC,;. 27. 
207332093 (1972). 
B. S. Petukhov and V. V. Kirillov, The problem of 
heat exchange in the turbulent flow of liquids in tubes. 
Teploener~/eti~cl No. 4. 63 68 (1958). 
W. M. Kays and E. Y. Leung, Heat transfer in annular 
passages hydrodynamically developed turbulent flow 
with arbitrarily prescribed heat flux, lnt. J. Heut Muss 
Trm@r 6, 537 557 (1963). 
R. G. Deissler and C. S. Eian, Analytical and experi- 
mental investigation of fully developed turbulent flow 
of air in a smooth tube with heat transfer with variable 
fluid properties. NACA TN 2629 (1952). 
V. L. Lel’chuk and B. V. Dyadyakin, Heat transfer from 
a wall to a turbulent current of air inside a tube and 
the hydraulic resistance at large temperature differen- 
tials, Problems in Heut Transfer, edited by M. A. Mikheev, 
AEC-tr-4511 (1962). (Translation of Voprosy Teploob- 
mena. Akademii Nauk S.S.S.R., Moskva (1959).) 
H. C. Perkins and P. Worsoe-Schmidt, Turbulent heat 
and momentum transfer for gases in a circular tube at 
wall to bulk temperature ratios to seven, U.S.A.E.C. 
TR SU 247-7 (1964). See also [jr{. J. Herrt Mnss Trclnsfir 
8, 1011 (1965). 
R. W. Allen and E. R. G. Eckert, Friction and heat- 
transfer measurements to turbulent pipe flow of water 
(Pr = 7 and 8) at uniform wall heat flux, J. Hectr Trcmsfer 
86, 301-310 (1964). 
J. A. Malina and E. M. Sparrow. Variable-property, 
constant-property, and entrance region heat-transfer 
results for turbulent flow of water and oil in a circular 
tube, Chejn. Engny Sci. 19, 9533962 (1964). 
P. Harriot and R. M. Hamilton, Solid-liquid mass 
transfer in turbulent pipe flou, Ckrm. Engng Sci. 20, 
1073-1078 (1965). 
R. H. Notter and C. A. Sleicher, The eddy diffusivity 
in the turbulent boundary layer near a wall, Chem. 
En(lrrg Sci. 26. 161~171 (1971). 
C. A. Sleicher. A. S. Awad and R. H. Notter, Temperature 
and eddy diffusivity profiles in NaK, fnt. J. Hem Muss 
Trumfer 16, 156551576 (1973). 
D. R. Dickinson, Tests of the effect of scale build-up 
on heat transfer using untreated water under conditions 
typical of the ETS-1 exhaust duct, AEC R &D Report, 
BNWL-632 (March 1968). 

NOTE ADDED IN PROOF 

The difference in Nusselt numbers predicted by equations 
(6) (7) and (11) are small when applied to the data of Allen 
and Eckert [13], Malina and Sparrow [14]. We have just 
become aware, however, of a study by Dickinson [18] which 
contains data on heat transfer to water at very high heat 
fluxes. The tests appear to have been carefully performed, 
local coefficients can be calculated from the data at seven 
locations, the wall heat flux was uniform, and there was a 
hydrodynamic entrance section with L/D = 64. The ob- 
served and calculated results are summarized in the following 
table. Points near the ends of the test section are not included. 
For these data the average deviation of equation (6) is 22 per 
cent and the average deviation of equation (11) is 7 per cent. 



Constant and variable property fluids in turbulent pipe flow 683 

LID Reb Prb NUobs 
NuodNucaic 

Equations Equation 
(6) or (7) (11) 

36 108 308 323 000 4.20 1160 1.23 lG4 
48 115 326 347 000 3.85 1090 1.33 1.13 
60 123 333 373000 3.6 1090 1.35 1.17 
72 130 320 391000 3.3 1190 1.24 1.08 
36 112 344 336000 4.0 1230 1.18 1.01 
48 121 3.51 365 000 3.65 1220 1.20 1.04 
60 130 361 397 000 3.3 1205 1.24 1.08 
72 139 362 428 000 3.05 1230 1.22 1.08 
36 125 212 31600 3.5 182 1.15 1.03 
48 134 215 40800 3.2 188 1.13 1.02 
60 143 288 44100 2.9 181 1.20 1.09 
72 152 289 47 700 2.7 189 1.16 1.07 
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